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Fourth Industrial Revolution by Artificial Intelligence 4Al

Bidioy..

OpenAl's New
ChatGPT

Radical Change of our Society in its Full Breadth! e
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Artificial Intelligence = Alchemy? 4A|

Al researchers allege that machine learning is
alchemy

By Matthew Hutson | May. 3,2018,11:15 AM

Ali Rahimi, a researcher in artificial intelligence (Al) at Google in San Francisco, California, took a
swipe at his field last December—and received a 40-second ovation for it. Speaking at an Al
conference, Rahimi charged that machine learning algorithms, in which computers learn through
trial and error, have become a form of "alchemy." Researchers, he said, do not know why some
algorithms work and others don't, nor do they have rigorous criteria for choosing one Al
architecture over another. Now, in a paper presented on 30 April at the International Conference
on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document
examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's
rigor.
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Challenges in Reliable Al %(I

Problems with Safety

Example:
Accidents involving robots

Problems with Security

pample: Current major problem
Risks of hacking into Al systems .
worldwide:

Lack of reliability of
Problems with Privacy Al technology!

Example: j

Privacy violations of health data

Problems with Responsibility

Example:

Black-box and biased decisions
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Strong Requirements for Reliability %(l

International Position concerning Reliable Al: *
w EU AIACT x

= Al Act of the European Union
= G7 Hiroshima Al Process

Major Challenge:
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A Mathematical Perspective
on Reliability
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Deep Neural Networks

Deep neural networks are a work horse for artificial intelligence!

Key Goal of McCulloch and Pitts (1943):

= Introduce artificial Intelligence! Artificial Neurons:

f(x1, ..., Xn) = p ZX,‘W,‘ — b
i=1

Definition of a Neural Network:

A deep neural network is a function @ : RY — RN of the form

ﬂﬁ\\\l:A 4\\'{/{“
G(X) = Tep(Tr—1p(--. p(T1(x))), x € RD S R 7:}:

)" A V‘V v‘v O V‘V S < ‘v

with
T, :RNe—x 5 RNe p=1,... L, where Tyx = WOx + pl¥)

‘
N0 4//\\‘ O 4//\\‘
EXNTH SN
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MATH
A Mathematical Understanding of Deep Learning %(l
Expressivity:
= Which aspects of a neural network architecture affect the performance of deep learning?
Applied Harmonic Analysis, Approximation Theory, ...
Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of

the problem?
Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

= Can we derive overall success guarantees (on the test data set)? ‘b’
Learning Theory, Probability Theory, Statistics, ... .L/\L
Explainability:

W
= Why did a trained deep neural network reach a certain decision? l |
Information Theory, Uncertainty Quantification, ...
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Generalization:
Mathematical Success Guarantees

MATH
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Understanding the Amazing Generalization Ability of Deep Neural Networks %(l

Why do neural networks perform that well in the high-parameter regime?

Can we estimate the generalization error?

under-parameterized over-parameterized

under-fitting over-fitting

. Test risk Test risk
'f) : -—;43 “classical” “modern”
E Ea' regime interpolating regime
N : :
~ o Training risk ~ Training risk:
sweet spot\:‘ - _ T~ . _interpolation threshold
Capacity of ‘H Capacity of H

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Some Common Approaches:

= VC di '
mension | Goal: Error Bounds for the
= Rademacher complexity performance on unseen data!

= Neural tangent kernels

MUNCHEN
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Graph Neural Networks %(l

Graph neural networks generalize classical neural networks to signals over graph domains.

Graph with N nodes Features Nx F Weight matrix N x N

Graph signal: I

s : graph nodes — R¢

Exemplary Applications:

&2 &
R %

Recommender system Fake news detection Chemistry
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Graph (Convolutional) Neural Networks %‘w
Convolution:
e v e ~
[ XXX Ap
. F apY .
I: XX ) ol
N /1A
XIXTXT ——)
4 y A y J
Spatial Approaches: Spectral Approaches:
= Sliding window = Convolution theorem
- Aggregating feature information from the => Defined in frequency domain

neighbors of each node - Filter = multiplication in the

. o frequency domain
Activation Function: ...similar

coarsening ®

Pooling:




A Special Form of Generalization Capability

General Form of Generalization:

Graph neural networks should generalize to graphs and
signals unseen in the training set.

MATH




A Special Form of Generalization Capability

General Form of Generalization:

Graph neural networks should generalize to graphs and
signals unseen in the training set.

The Concept of Transferability:

If two graphs model the same phenomenon, a trained
graph neural network should have approximately the
same repercussion on both graphs.

We will derive a complete analysis of
this subproblem of generalization!




_ o MATH
Graph Laplacian: Oscillations on Graphs %(l

Definition: Let D be the degree matrix and W the adjacency matrix. Then the unnormalized
Graph Laplacian is defined by

A,=D—-W

and the normalized Graph Laplacian is given by

A, =D 12A D2

Remark: The Graph Laplacian A is self-adjoint. We will denote its
- eigenvalues by {\j }j (Frequencies),

- eigenvectors by {U; }; (Fourier modes).

The graph Laplacian encapsulates the geometry of the graph! J

Graph Laplacian Eigenvectors

e~ I o ol oF MK oV NI oV I A 1
L oY 3K AN NK 2V NI -3 <% L2 N Av 1)
DA K 2 Ko -2 Ko I oV

2V N a¥ I oY Bl oV NI oY
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Spectral Graph Convolution %(l

Definition: Letting {UJ: }j denote the eigenvectors of the graph Laplacian, we define the spectral
graph convolution operator by

Cf = @If. uj) uj.
j

Problem with the Implementation:

-> Computationally demanding

« Eigendecomposition is slow.
* No general FFT for graphs.

-> Not transferable

* The eigendecomposition is not stable to graph perturbations.
A fixed filter has different repercussions on similar graphs.

Solution: Implement convolution using functional calculus! J




Functional Calculus
Definition: Let T be a self-adjoint operator with discrete spectrum
Tv = Z Aj (v, uj) u
J

A function g : R — C of T is then defined via

v—Zg ) (v, uj) u

Remark:
o\
If g(\) = %‘ 025 then g(T) = (LioaT!) (Sie i T')

—1

Spectrum of T

e T |

~ Spectrum of g

MATH
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Spectral Filtering using Functional Calculus %(l

Functional Calculus Filters:
The functional calculus for g : R — C applied to the graph Laplacian yields

g(8)f = > EL)(F.u) uy

Recall:

The previous implementation used
CF = % Ca)iF, ui
J

Advantages of Functional Calculus Viewpoint:

This approach...

> ...solves the instability problem (Levie, Isufi, Kutyniok; 2019).
= ...solves the computational problem, if g is a rational function.
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Three Approaches to Transferability %(l

Stability under Perturbation (Levie, Isufi, K; 2019), (Kenlay, Thanou, Dong; 2021):

= Two graphs which are small perturbations of each other.

Topological Space Sampling (Keriven, Bietti, Vaiter; 2020), (Levie, Huang, Bucci,
Bronstein, K; 2020):

= Two graphs which sample the same underlying continuous space.

Graphon Approach (Ruiz, Chamon, Ribeiro; 2020):

= Two graphs that come from the same sequence that converges to a graphon in a
homomorphism density sense.
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Graphs Modeling the Same Phenomenon %(l

Interpretation:
=< Weighted graphs:

* Points and strength of correspondence between pairs of points.




MATH
Graphs Modeling the Same Phenomenon 9%

Interpretation:
=< Weighted graphs:

 Points and strength of correspondence between pairs of points.

= Metric spaces:

* Points and distances.




Graphs Modeling the Same Phenomenon

Interpretation:
=< Weighted graphs:
* Points and strength of correspondence between pairs of points.

= Metric spaces:

* Points and distances.

Our Viewpoint:
Think of graphs as discretizations of metric spaces:
Distance /' <= edge weight \,

Graphs that represent the same phenomenon are

discretizations of the same metric space!
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Comparing the Repercussion of a Filter on Two Graphs %(l
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Comparing the Repercussion of a Filter on Two Graphs >%‘$<I

-1 -0.5 0 0.5 1 15 2 25 3 3.5

Take a generic signal f : M — C
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MATH
Comparing the Repercussion of a Filter on Two Graphs >%‘$<I

“1 -0.5 0 0.5 1 15 2 25 3 3.5

Sample to both graphs  51f : G = C, Sf : Gy — C
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MATH
Comparing the Repercussion of a Filter on Two Graphs >%‘$<I

-1 -0.5 0 0.5 1 1.5 2 25 3 35

Apply both graph filters g(A1)S:1f,  g(Ay)Sf
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Comparing the Repercussion of a Filter on Two Graphs >%‘$<I

-1 -0.5 0 0.5 1 15 2 25 3 3.5

Interpolate back to L2(M) to get ||[Ri1g(A1)S1f — Rog(A2)Sf|| = 0
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Main Result %(l

Theorem (Levie, Huang, Bucci, Bronstein, Kutyniok; 2021):

“Transferability of graph (convolutional) neural network

< Transferability of graph Laplacian + Consistency error" )

Theorem (Levie, Huang, Bucci, Bronstein, K; 2021):

Consider two graphs G;, j = 1,2 and two graph Laplacians A;, j = 1,2,
approximating the same Laplacian £ in M, and consider a ReLU graph CNN with
Lipschitz filters. Further, let G;; be the graph in layer | with graph Laplacians
A;j ;. Also, assume that, for all layers /, bands A, and j = 1,2,

ISHEP(N) = AgiS PN < 6

and
IP(\L) = RSP <0

for some 0 < 0 < 1. Then, for all output-channels k and mappings ¢kL given by

the graph CNN

R &%, SN P(No) — Ry d% S P(No)|
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Further Results on Generalization Ability of GNNs %(l

Graph Convolutional Neural Networks:

=> Similar results on transferability for the graphon setting
(Maskey, Levie, Kutyniok; 2022).

= This builds on (Ruiz, Wang, Ribeiro; 2021).

Message Passing Graph Neural Networks:

= Non-asymptotic generalization bounds, only depending N "
on the regularity of the network and space (Maskey, m"\/...c/ ”
Levie, Lee, Kutyniok; 2023). /.\

= This builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, o “"‘\
Zhang; 2019), (Yehudai, Fetaya, Meirom, Chechik, fe/ G

Maron; 2022).
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Spectral versus Spatial Methods 4A|

80 A
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40 A

20 A
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Transferability under Graph Perturbation (Randomly Removing Edges)

Filter Error
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A Mathematical Understanding of Deep Learning %(l
Expressivity:
= Which aspects of a neural network architecture affect the performance of deep learning?
Applied Harmonic Analysis, Approximation Theory, ...
Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of

the problem?
Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

= Can we derive overall success guarantees (on the test data set)? ‘b’
Learning Theory, Probability Theory, Statistics, ... .L/\L
Explainability:

W
= Why did a trained deep neural network reach a certain decision? l |
Information Theory, Uncertainty Quantification, ...
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Explainability:
A Mathematical Approach

MATH



Some General Thoughts about Explainability

Main Goal: We aim to understand decisions of " "black-box" predictors!

- What exactly is relevance in a mathematical sense?

Selected Questions:

= Can we develop a theory for optimal relevance maps? _ "%

=> How to extend to challenging modalities? g -

- Can we derive higher level explanations? J |

Vision:

Questioning the Al as a human about the reason for a decision! i <ol

ChatGPT

The explainability approach itself needs to be reIiabIe!J

MATH




Information Theory: Rate-Distortion Viewpoint

The Setting: Let
®: [0,1]¢ — [0, 1] be aclassification function,

x € [0,1]9 be an input signal.

Alice Bob

S

b
d(x) = 0.97 ‘ ‘ ®(y) = 0.91
(*) X )
“Monkey” “Monkey”
Original image x Partial image S Random completion y

Expected Distortion:

1

D(S) = D(#.x.5) = E |5 (6(x) ~ 6(y))

MATH




Rate-Distortion Explanation (RDE)
Rate-Distortion Function:

R(e) =, min {|S| - D(S) <}

Use this viewpoint for the definition of a relevance map!
Theorem (Waldchen, Macdonald, Hauch, Kutyniok, 2020):

Finding a minimizer of R(¢€) is very hard!

Computable Variant of RDE (Macdonald, Waldchen, Hauch, Kutyniok, 2020):

minimize  D(s)+ A||s||y subject to s € [0,1]?

iy
...allows rigorous mathematical performance analysis! l .\
ol

MATH
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Going Beyond.... %(l

Extending to More Realistic Scenarios?

N Discriminator .
.I @ — {Fake

- Example: Apply an inpainting GAN ) A | Yake image

Extension 1 (HeiB, Levie, Resnick, Kutyniok, Bruna; 2020): Training set AV

-» Choose the obfuscations more natural

_
O\ T~

Obtaining Higher-Level Explanations?

Extension 2 (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021):
= Apply RDE to decompositions of the data

- Example: Take a wavelet decomposition of an image.

> CartoonX




MAIH

Idea of CartoonX (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022) Al

Image Compression

Input image x Representation h
T .
Select £

entries with s

¥ minimize d
dlz,y)—— = selectl
largest entries

A

|

Replace unselected
Reconstruction y with zero

CartoonX

Input image x Representation h

l

Select £
entries with s

minimize d
d(®(z), ®(y))——> <= select £
most relevant
entries

|

Replace unselected
with random noise

LUDWIG-
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Explainability: Understanding Seemingly Wrong Decisions %(I

Example from Telecommunication:

Estimated RadioMap via RadioUNet Rate-Distortion Explanation
(Levie, Cagkan, Kutyniok, Caire; 2020) (Heil3, Levie, Resnick, Kutyniok, Bruna; 2020):

LLLLL G-
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Explainability: Understanding Wrong Decisions %

Example from Imaging:

Wrong decision by Al: Wrong decision by Al:

Diaper Screw
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Explainability: Understanding Wrong Decisions %

Example from Imaging:

Explanation by CartoonX Explanation by CartoonX

(Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021)

Extension: ShearletX (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023)!
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A Mathematical Understanding of Deep Learning %(l
Expressivity:
= Which aspects of a neural network architecture affect the performance of deep learning?
Applied Harmonic Analysis, Approximation Theory, ...
Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of

the problem?
Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

= Can we derive overall success guarantees (on the test data set)? l\"
Learning Theory, Probability Theory, Statistics, ... .L/\u
Explainability:

W
= Why did a trained deep neural network reach a certain decision? l |
Information Theory, Uncertainty Quantification, ...

Are there fundamental limitations? J l/\/
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A Word of Caution:
Problems with Computability

MATH



Are There Limitations to Be Aware Of? %(l

Artificial Intelligence is not a Swiss Army Knife!

More Fundamental Viewpoint:

\ ! ! ‘ ]

infinite tape cells finite alphabet

What can actually be computed on digital hardware? J

Turing-Machine

> A computable problem (function) is one for which the input-output relation
' can be computed on a digital machine for any given accuracy.

What about Non-Computability?

Non-computable problems can be tackled successtully in
practice, if limited precision succeeds!

® Butwe have no guarantees of correctness! ,.



Very Disappointing News

Theorem (Boche, Fono, Kutyniok; 2022):
The solution of a finite-dimensional inverse problem is not
(Turing-)computable (by a deep neural network).

Solution Set:
For Ac C™N and y € C™ let

V(A,y) = arg min ||x||; such that [|[Ax — y||2 <.
xeCN

Theorem (Boche, Fono, K; 2023):
Fix parameters ¢ € (0, %), N > 2, and m < N. There does not eg

(Banach-Mazur-)computable function ¥ : C™N x ¢™ — CN

sup WA, y) = V(A y)|e
(A,y)ECmXN wx(Cm
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What now? |II YN
Theory tells us... C\?

Theorem (Boche, Fono, Kutyniok; 2023): >
The solution of a finite-dimensional inverse problem is computable (by a r

4

deep neural network) on an analog (Blum-Shub-Smale) machine!

Reliability for certain problem settings requires novel hardware!

Possible Future Developments:
= Neuromorphic computing
= Biocomputing

= Quantum computing
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More Problems with Digital Hardware

Theorem (Boche, Fono, Kutyniok; 2023):
Many classification problems are also not

Theorem (Boche, Fono, Kutyniok; 2023):
(Turing) computable!

The Pseudo Inverse is not (Banach-Mazur)

' |  computable!
7
@

Theorem (Bacho, Boche, Kutyniok; 2023):

Computing the solutions to the Laplace and the Theorem (Lee, Boche, Kutyniok; 2023):
diffusion equation on digital hardware causes a Finding the solution of most optimization problems
complexity blowup. is not (Turing-)computable; it can not even be

approximated by a Turing computable function!

o




Future Perspective

Vision for the Future:

1. Provable Computability

2. Provable Stability and Performance Guarantees

Utilize only digital CPUs

3. Fulfilment of Legal Requirements i 2 e s

= Algorithmic Transparancy/Accounability L e — R il i S

9 nght tO EXplaln Source:Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

4. Energy Efficiency/Sustainability

_L?% Spike emission
= s

=—— EcoLogic Computing

/\\ t
QB PN\ https://www.ecologiC—Computing.ComJ

Action Potential

b _4

[

w

Truly Reliable Al ... by Next Generation Computing! .
LMU |

=

J



Spike dynamics of neuron n;

Spike emission to
neurons n, and ng

t

Threshold

— .~ Yog

X ‘a Spike
» ' encoding
'

Potential of neuron n,

t tttt  Time
Remarks: Input spikes from neurons n, and n,

= More biologically realistic than first and second generation artificial neurons.

= Information is encoded in the timing of individual spikes.

Meta-Theorem (Singh, Fono, Kutyniok; 2024):

“Spiking neural networks can be emulated by classical artificial ReLU-neural networks,
but in certain cases, they can be shown to perform strictly better concerning complexity.” .

LMU}:




Future of Al Computing n %

Project ,,Next Generation Al Computing (GAIn)*

Co-Pls:
e
Holger Boche Frank Fitzek Stefanie Speidel
(TUM) (TU Dresden) (TU Dresden)
Funding:

Bavarian State Ministry of
Science and the Arts

FUR WISSENSCHAFT SACHSEN

KULTUR UND TOURISMUS

STAATSMINISTERIUM Freistaat
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Conclusions

MATH



Conclusions

Artificial Intelligence:

»
'#'1_'{'\.- -
1

Reliability of Deep Learning from a Mathematical Perspective:

= Impressive performance in real-world applications!

- We still have a major problem with reliability!

> Expressivity: Optimal architectures?

= Learning: Controllable, efficient algorithms?

= Generalization: Performance on test data sets?
=> Explainability: Explaining network decisions?
Inverse Problems:

- Optimal combination of Al & Models required! of deep learning on digital hardware!

Vision for the Future:
Truly Reliable Al...by Next Generation Computing!

o
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Konrad Zuse School of Excellence in Reliable Al 4A|

(https://zuseschoolrelai.de) ® |
Shga¥s’

X/\/

“relAl

Konrad Zuse
School of Excellence
in Reliable Al

Security Privacy

Responsibility

Medicine &
Healthcare

Robotics &
Interacting Systems

Algorithmic
Decision-Making

Mathematical &
Algorithmic
Foundations

[ |
Research Areas Central Themes

SPONSORED BY THE

Federal Ministry
of Education
and Research

Zuse Schools
DAAD Konrad Zuse Schools of Excellence
in Artificial Intelligence

e

Mumc, Germany
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Technische
Universitat \
Minchen LIVI u

Mission: Train future generations of Al experts in
Germany who combine technical brilliance with
awareness of the importance of Al’s reliability

LUDWIG-
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baiosphere N
MAXIMILIANS- RaN the bavarian ai network
LMU UNIVERSITAT
MUNCHEN

DFG Deutsche
Forschungsgemeinschaft

for your attention!

und Forschung

% Bundesministerium
& fiir Bildung

|'_i'| - '|_'|l_
References available at:
www.ai.math.Imu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning, 2021

Related Book: ° HUB@

LMU
P. Grohs and G. Kutyniok, eds.,
Mathematical Aspects of Deep Learning
Cambridge University Press, 2022.

www.ai-news.Imu.de
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