
FACULTY FOR MATHEMATICS,  INFORMATICS,  AND STATISTICS
DEPARTMENT OF MATHEMATICS

BAVARIAN AI CHAIR “MATHEMATICAL FOUNDATIONS OF ARTIFICIAL INTELLIGENCE”

Reliable AI: Successes, 
Challenges, and Limitations

Gitta Kutyniok 

LMU Munich
(also University of Tromsø, Norway & 

DLR – German Aerospace Center)

FedCSIS 2024
Belgrad, Serbia, 8-11 September, 2024



Fourth Industrial Revolution by Artificial Intelligence

Radical Change of our Society in its Full Breadth!



Artificial Intelligence = Alchemy?



Challenges in Reliable AI

Example: 
Accidents involving robots

Problems with Safety

!
Example: 
Risks of hacking into AI systems

Problems with Security

Example: 
Black-box and biased decisions

Problems with Responsibility

Current major problem 
worldwide:
Lack of reliability of 
AI technology!

Example: 
Privacy violations of health data

Problems with Privacy



Strong Requirements for Reliability

International Position concerning Reliable AI:

AI Act of the European Union

G7 Hiroshima AI Process

Major Challenge:

Derive a profound mathematical understanding!



A Mathematical Perspective
on Reliability



A deep neural network is a function                            of the form

with

Deep Neural Networks

Deep neural networks are a work horse for artificial intelligence!

Key Goal of McCulloch and Pitts (1943):

Introduce artificial Intelligence! Artificial Neurons:

Definition of a Neural Network:



A Mathematical Understanding of Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance of deep learning?

Learning:
Why does stochastic gradient descent converge to good local minima despite the non-convexity of 
the problem?

Generalization:
Can we derive overall success guarantees (on the test data set)?

Explainability:
Why did a trained deep neural network reach a certain decision?

Applied Harmonic Analysis, Approximation Theory, ...

Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Learning Theory, Probability Theory, Statistics, ...

Information Theory, Uncertainty Quantification, ...



Generalization: 
Mathematical Success Guarantees



Understanding the Amazing Generalization Ability of Deep Neural Networks

Why do neural networks perform that well in the high-parameter regime?

Can we estimate the generalization error?

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Some Common Approaches:
VC dimension

Rademacher complexity

Neural tangent kernels

Goal: Error Bounds for the 
performance on unseen data!



Graph Neural Networks

Graph neural networks generalize classical neural networks to signals over graph domains.

Graph signal:

Exemplary Applications:



Graph (Convolutional) Neural Networks

Convolution:

Spatial Approaches:

Sliding window

Aggregating feature information from the 
neighbors of each node

Spectral Approaches:

Convolution theorem

Defined in frequency domain

Filter = multiplication in the 
frequency domain

Activation Function:   …similar

Pooling:



A Special Form of Generalization Capability

General Form of Generalization:
Graph neural networks should generalize to graphs and 
signals unseen in the training set.



A Special Form of Generalization Capability

General Form of Generalization:
Graph neural networks should generalize to graphs and 
signals unseen in the training set.

The Concept of Transferability:
If two graphs model the same phenomenon, a trained 
graph neural network should have approximately the 
same repercussion on both graphs.

We will derive a complete analysis of 
this subproblem of generalization!



Definition: Let     be the degree matrix and the adjacency matrix. Then the unnormalized 
Graph Laplacian is defined by

and the normalized Graph Laplacian is given by

Graph Laplacian: Oscillations on Graphs

Remark: The Graph Laplacian      is self-adjoint. We will denote its
eigenvalues by            (Frequencies),

eigenvectors by (Fourier modes).

The graph Laplacian encapsulates the geometry of the graph!



Spectral Graph Convolution

Definition: Letting           denote the eigenvectors of the graph Laplacian, we define the spectral 
graph convolution operator by

Problem with the Implementation:
Computationally demanding
• Eigendecomposition is slow.
• No general FFT for graphs.

Not transferable
• The eigendecomposition is not stable to graph perturbations.
• A fixed filter has different repercussions on similar graphs.

Solution: Implement convolution using functional calculus!



Functional Calculus

Definition: Let      be a self-adjoint operator with discrete spectrum

A  function                      of       is then defined via

   

Remark:
If                               then



Spectral Filtering using Functional Calculus

Functional Calculus Filters:
The functional calculus for                      applied to the graph Laplacian yields

Recall:
The previous implementation used

Advantages of Functional Calculus Viewpoint:
This approach...

...solves the instability problem (Levie, Isufi, Kutyniok; 2019).
 ...solves the computational problem, if     is a rational function.



Three Approaches to Transferability

Stability under Perturbation (Levie, Isufi, K; 2019), (Kenlay, Thanou, Dong; 2021):
Two graphs which are small perturbations of each other. 

Topological Space Sampling (Keriven, Bietti, Vaiter; 2020), (Levie, Huang, Bucci, 
Bronstein, K; 2020):

Two graphs which sample the same underlying continuous space.

Graphon Approach (Ruiz, Chamon, Ribeiro; 2020):
Two graphs that come from the same sequence that converges to a graphon in a 
homomorphism density sense.



Graphs Modeling the Same Phenomenon

Interpretation:
Weighted graphs:
• Points and strength of correspondence between pairs of points.



Graphs Modeling the Same Phenomenon

Interpretation:
Weighted graphs:
• Points and strength of correspondence between pairs of points.

Metric spaces:
• Points and distances.



Graphs Modeling the Same Phenomenon

Interpretation:
Weighted graphs:
• Points and strength of correspondence between pairs of points.

Metric spaces:
• Points and distances.

Our Viewpoint:
Think of graphs as discretizations of metric spaces:

                               Distance                     edge weight  

Graphs that represent the same phenomenon are
discretizations of the same metric space!



Comparing the Repercussion of a Filter on Two Graphs



Comparing the Repercussion of a Filter on Two Graphs



Comparing the Repercussion of a Filter on Two Graphs



Comparing the Repercussion of a Filter on Two Graphs



Comparing the Repercussion of a Filter on Two Graphs



Main Result

Theorem (Levie,  Huang, Bucci, Bronstein, Kutyniok; 2021):
“Transferability of graph (convolutional) neural network

≤ Transferability of graph Laplacian + Consistency error''



Further Results on Generalization Ability of GNNs

Graph Convolutional Neural Networks:
Similar results on transferability for the graphon setting 
(Maskey, Levie, Kutyniok; 2022).
This builds on (Ruiz, Wang, Ribeiro; 2021).

Message Passing Graph Neural Networks:
Non-asymptotic generalization bounds, only depending 
on the regularity of the network and space (Maskey, 
Levie, Lee, Kutyniok; 2023).
This builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, 
Zhang; 2019), (Yehudai, Fetaya, Meirom, Chechik, 
Maron; 2022).



Spectral versus Spatial Methods



Transferability under Graph Perturbation (Randomly Removing Edges)



A Mathematical Understanding of Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance of deep learning?

Learning:
Why does stochastic gradient descent converge to good local minima despite the non-convexity of 
the problem?

Generalization:
Can we derive overall success guarantees (on the test data set)?

Explainability:
Why did a trained deep neural network reach a certain decision?

Applied Harmonic Analysis, Approximation Theory, ...

Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Learning Theory, Probability Theory, Statistics, ...

Information Theory, Uncertainty Quantification, ...



Explainability: 
A Mathematical Approach



Some General Thoughts about Explainability

Main Goal: We aim to understand decisions of ``black-box'' predictors!

Selected Questions:
What exactly is relevance in a mathematical sense?

Can we develop a theory for optimal relevance maps?

How to extend to challenging modalities?

Can we derive higher level explanations?

The explainability approach itself needs to be reliable!

Vision:
Questioning the AI as a human about the reason for a decision!



Information Theory: Rate-Distortion Viewpoint



Rate-Distortion Explanation (RDE)

Rate-Distortion Function:

Use this viewpoint for the definition of a relevance map!

Theorem (Wäldchen, Macdonald, Hauch, Kutyniok, 2020):

                                  Finding a minimizer of           is very hard!

Computable Variant of RDE  (Macdonald, Wäldchen, Hauch, Kutyniok, 2020):

…allows rigorous mathematical performance analysis!



Going Beyond….

Extension 1 (Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):
Choose the obfuscations more natural

Example: Apply an inpainting GAN

Extension 2 (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021):
Apply RDE to decompositions of the data

Example: Take a wavelet decomposition of an image.

CartoonX

Extending to More Realistic Scenarios?

Obtaining Higher-Level Explanations?



Idea of CartoonX (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022)



Explainability: Understanding Seemingly Wrong Decisions

Example from Telecommunication:

Estimated RadioMap via RadioUNet

(Levie, Cagkan, Kutyniok, Caire; 2020)

Rate-Distortion Explanation 

(Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):



Explainability: Understanding Wrong Decisions

Example from Imaging:

Wrong decision by AI:

Diaper
Wrong decision by AI:

Screw



Explainability: Understanding Wrong Decisions

Explanation by CartoonX

(Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021)

Explanation by CartoonX

Example from Imaging:

Extension: ShearletX (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023)!



A Mathematical Understanding of Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance of deep learning?

Learning:
Why does stochastic gradient descent converge to good local minima despite the non-convexity of 
the problem?

Generalization:
Can we derive overall success guarantees (on the test data set)?

Explainability:
Why did a trained deep neural network reach a certain decision?

Applied Harmonic Analysis, Approximation Theory, ...

Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Learning Theory, Probability Theory, Statistics, ...

Information Theory, Uncertainty Quantification, ...

Are there fundamental limitations?



A Word of Caution: 
Problems with Computability



Are There Limitations to Be Aware Of?

What can actually be computed on digital hardware?

More Fundamental Viewpoint:

A computable problem (function) is one for which the input-output relation 
can be computed on a digital machine for any given accuracy.

Non-computable problems can be tackled successfully in 
practice, if limited precision succeeds!

But we have no guarantees of correctness!

What about Non-Computability?

Artificial Intelligence is not a Swiss Army Knife!

Turing-Machine



Very Disappointing News

Theorem (Boche, Fono, Kutyniok; 2022):
The solution of a finite-dimensional inverse problem is not 
(Turing-)computable (by a deep neural network).



What now?

Possible Future Developments:
Neuromorphic computing

Biocomputing

Quantum computing

Theorem (Boche, Fono, Kutyniok; 2023):
The solution of a finite-dimensional inverse problem is computable (by a 
deep neural network) on an analog (Blum-Shub-Smale) machine!

Theory tells us…

Reliability for certain problem settings requires novel hardware!



More Problems with Digital Hardware

Theorem (Boche, Fono, Kutyniok; 2023):              
The Pseudo Inverse is not (Banach-Mazur) 
computable! 

Theorem (Bacho, Boche, Kutyniok; 2023):                                                                           
Computing the solutions to the Laplace and the 
diffusion equation on digital hardware causes a 
complexity blowup.

Theorem (Lee, Boche, Kutyniok; 2023):                                                 
Finding the solution of most optimization problems 
is not (Turing-)computable; it can not even be 
approximated by a Turing computable function!

Theorem (Boche, Fono, Kutyniok; 2023):              
Many classification problems are also not 
(Turing) computable! 



Future Perspective

Truly Reliable AI … by Next Generation Computing!

Vision for the Future:
1. Provable Computability

2. Provable Stability and Performance Guarantees

3. Fulfillment of Legal Requirements

Algorithmic Transparancy/Accounability

Right to Explain

4. Energy Efficiency/Sustainability

Source:Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

Spiking Neural Networks!

https://www.ecologic-computing.com



A Glimpse in Spiking Neural Networks

Remarks:
More biologically realistic than first and second generation artificial neurons.
Information is encoded in the timing of individual spikes.

Meta-Theorem (Singh, Fono, Kutyniok; 2024):
“Spiking neural networks can be emulated by classical artificial ReLU-neural networks, 
but in certain cases, they can be shown to perform strictly better concerning complexity.” 



Future of AI Computing

Project „Next Generation AI Computing (GAIn)“

Co-PIs:

Holger Boche                                      Frank Fitzek                                    Stefanie Speidel
    (TUM)                                                  (TU Dresden)                                          (TU Dresden)

Funding:



Conclusions



Conclusions
Artificial Intelligence:

Impressive performance in real-world applications!
We still have a major problem with reliability! 

Reliability of Deep Learning from a Mathematical Perspective:

Expressivity: Optimal architectures?
Learning: Controllable, efficient algorithms?
Generalization: Performance on test data sets?
Explainability: Explaining network decisions?

There exist serious problems for reliability 
of deep learning on digital hardware!

Vision for the Future: 
Truly Reliable AI…by Next Generation Computing!

Inverse Problems:

Optimal combination of AI & Models required! 



Konrad Zuse School of Excellence in Reliable AI 
(https://zuseschoolrelai.de)

Munich, Germany 

Mission: Train future generations of AI experts in 
Germany who combine technical brilliance with
awareness of the importance of AI’s reliability



www.ai-news.lmu.de

Thank you very much
for your attention!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
      Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning, 2021

Related Book:
P. Grohs and G. Kutyniok, eds.,
Mathematical Aspects of Deep Learning
Cambridge University Press, 2022.
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