
© 2024 JPT 1

Juha-Pekka Tolvanen

jpt@metacase.com

Languages for non-developers
what, how, where?

© 2024 JPT 2

Software everywhere
Software explosion
Software is eating the world

1950 1960 1970 1980 1990 2000 2010 2020

© 2024 JPT 3

Continuous growth of functionality

© 2024 JPT 4

© 2024 JPT 5
Source: NASA, July 20, 1969

Apollo Guidance Computer
software in 36K words

(16-bit wordlength)

Lawn mower robot:
software upgrade: 527 MB

(.msi package)

© 2024 JPT 6

Also complexity is growing faster than
software development productivity

© 2024 JPT 7

How to improve productivity?

© 2024 JPT 8

Solution?

◼ More developers

◼ New frameworks

◼ Better tools

◼ More automation

◼ AI

◼ ?

◼ Better languages, also for non-developers

© 2024 JPT 9

Solution?

API query: https://pxdata.stat.fi:443/PxWeb/api/v1/en/StatFin/tyti/statfin_tyti_pxt_13au.px

Statistics Finland's interface service with the license CC BY 4.0

https://pxdata.stat.fi/PxWeb/api/v1/en/StatFin/tyti/statfin_tyti_pxt_13au.px
https://creativecommons.org/licenses/by/4.0/deed.en

© 2024 JPT 10

0111 1111

0100 0101

0100 1100

0100 0110

0000 0010

0000 0001

0000 0000

0000 0000

0000 0010

0010 0000

0000 0010

0000 0010

0000 0000

0000 0000

org 100h

mov ah,9h

mov dx,offset text

int 21h

ret

text: db ‘hello$’

int main(void)

{

printf("Hello\n");

return 0;

}

int main(void)

{

cout<<"Hello"<<endl;

return 0;

}

Transcript show:'Hello'.

Abstraction

Automation

© 2024 JPT 11

Flow diagram for ENIAC,
John von Neumann,
1950 Manuscript
Division, Library of
Congress (164)

© 2024 JPT 12

© 2024 JPT 13

General purpose

© 2024 JPT 14

Domain-specific

© 2024 JPT 15

Domain-Specific Languages

◼ Narrow, very narrow

◼ Aim for 100% fit with the problem domain

◼ Raise the level of abstraction, hide unnecessary details

◼ External and internal

© 2024 JPT 16

Gothic Security*
public class BasicStateMachine extends StateMachineBuilder {

Events doorClosed, drawerOpened, lightOn, panelClosed;
Commands unlockPanel, lockPanel, lockDoor, unlockDoor;
States idle, active, waitingForLight, waitingForDrawer, unlockedPanel;
ResetEvents doorOpened;

protected void defineStateMachine() {
doorClosed.code("D1CL");
drawerOpened.code("D2OP");
lightOn.code("L1ON");
panelClosed.code("PNCL");
doorOpened.code("D1OP");
unlockPanel.code("PNUL");
lockPanel.code("PNLK");
lockDoor.code("D1LK");
unlockDoor.code("D1UL");

idle
.actions(unlockDoor, lockPanel)
.transition(doorClosed).to(active)
;

active
.transition(drawerOpened).to(waitingForLight)
.transition(lightOn).to(waitingForDrawer)
;

waitingForLight
.transition(lightOn).to(unlockedPanel)
;
.transition(drawerOpened).to(unlockedPanel)
;

unlockedPanel
.actions(unlockPanel, lockDoor)
.transition(panelClosed).to(idle)
;

}
}

*Fowler, Domain-Specific Languages, Addison-Wesley, 2008

Event doorClosed = new Event("doorClosed", "D1CL");
Event doorOpened = new Event("doorOpened", "D1OP");
Event lightOn = new Event("lightOn", "L1ON");
Event drawerOpened = new Event("drawerOpened", "D2OP");
Event panelClosed = new Event("panelClosed", "PNCL");

Command unlockDoorCmd = new Command("unlockDoor", "D1UL");
Command lockPanelCmd = new Command("lockPanel", "PNLK");
Command unlockPanelCmd = new Command("unlockPanel", "PNUL");
Command lockDoorCmd = new Command("lockDoor", "D1LK");

StateMachine machine = new StateMachine(idle);

State activeState = new State("active");
State idleState = new State("idle");
State unlockedPanelState = new State("unlockedPanel");
State waitingForDrawerState = new State("waitingForDrawer");
State waitingForLightState = new State("waitingForLight");

activeState.addTransition(lightOn, waitingForDrawerState);
activeState.addTransition(drawerOpened, waitingForLightState);

idleState.addAction(unlockDoorCmd);
idleState.addAction(lockPanelCmd);
idleState.addTransition(doorClosed, activeState);

unlockedPanelState.addAction(unlockPanelCmd);
unlockedPanelState.addAction(lockDoorCmd);
unlockedPanelState.addTransition(panelClosed, idleState);

waitingForDrawerState.addTransition(drawerOpened, unlockedPanelState);

waitingForLightState.addTransition(lightOn, unlockedPanelState);

machine.AddResetEvents(doorOpened);

© 2024 JPT 17

Domain-Specific Languages

◼ Narrow, very narrow

◼ Aim for 100% fit with the problem domain

◼ Raise the level of abstraction, hide unnecessary details

◼ External and internal

◼ Not a new idea!

◼ Applied also outside the software world!

© 2024 JPT 18

Mimic closely the domain

1 2

4

3

3

4

4

4

1

1

1

1

© 2024 JPT 19

Debug, confirming errors

© 2024 JPT 20

© 2024 JPT 21

1. Picked 200 cases
2. Then selected 100

(knowing who created them)

© 2024 JPT 22

Who implemented languages? (n=100)

51 %

17 %

32 %

in-house

external consultant

both

© 2024 JPT 23

Domains of the languages (n=100)

© 2024 JPT 24

Size of the metamodels (n=39)

© 2024 JPT 25

Primary language user (n=100)

9 %

27 %

8 %

1 %

55 %

Programmer

Domain expert

Between

Both

Unknown

© 2024 JPT 26

Primary language user (n=45)

20 %

60 %

18 %
2 %

Programmer

Domain expert

Between

Both

© 2024 JPT 27

Size and user (n=24)

© 2024 JPT 28

Size and language creator (n=39)

© 2024 JPT 29

A language for insurance experts

◼ Key language elements:
– Product & product bundle

– Calculation basis

– Damage

– Insured object

– Danger

– Product cover

– Event

– Payment

– Policyholder

– Risk

– Insured person

– Tariff

© 2024 JPT 30

Languages for UX, usability experts

© 2024 JPT 31

Example: fish farm automation

© 2024 JPT 32

Example: heating system

Code

Autobuild

API desc

BoM

Deployment
guide

© 2024 JPT 33

4 railway DSLs

© 2024 JPT 34

Languages for safety (e.g. ISO26262)

◼ Item

◼ Hazard

◼ Hazard event

◼ Safety goal

◼ Safety concept

◼ Feature flaw

◼ ASIL

– Exposure

– Severity

– Controllability

© 2024 JPT 35

How languages are created?

Modelingabstract syntax

concrete syntax semantics

© 2024 JPT 36

What is needed beyond metamodel

1. Concrete syntax matters

2. Involvement of language users = active participation

3. (Automated) support for language use

– Errors

– Warnings

– Guidance

– Simulation

– Animation

4. Expect evolution and co-evolution with work done

© 2024 JPT 37

1. Concrete syntax matters

◼ Mimic the problem domain

◼ Accepted by users

◼ Symbols should use full range of visual variables*

* . y, T “ y ” N , EEE T E , . 35, . 6, 2009

© 2024 JPT 38

© 2024 JPT 39

2. Enable participation

◼ Try early

– Examples of typical apps/features/systems, not metamodel

– Prototype, ready to throw away

– Narrow to minimum what is needed

© 2024 JPT 40

Case: manually tested to released

© 2024 JPT 41

2. Enable participation

◼ Try early

– Examples of typical apps/features/systems, not metamodel

– Prototype, ready to throw away

– Narrow to minimum what is needed

◼ Collaborative work: create & use DSL at the same time

– Ask to define notation

– Give (read-only or partial) access to the language
definition

◼ Collect feedback

– Get feedback when language is used

– Via tool or even via the language itself

© 2024 JPT 42

3. Support for language users

◼ Not only basics of language, but also covering

– Errors

– Warnings

– Guidance

– Views

– Animation

– Simulation

◼ Examples

– Tutorials

– Typical cases

© 2024 JPT 43

Graphical
Animation of

Run-time Values

© 2024 JPT 44

*Kelly, Tolvanen. Automated Annotations in Domain-Specific Models: Analysis of 23 Cases. STAF Workshops, 2021

© 2024 JPT 45

4. Evolution and Co-evolution

◼ Domain evolves

◼ Users learn

◼ External requirements must be met

➢ Language evolves

➢ Existing work must evolve too

◼ Ideally, updates automatically

– Manual work and transformations are often not practical

© 2024 JPT 46

Evaluation framework: 4 aspects*

2 Location
of Change

↓

1 Nature of Change

Add Rename Remove Change

Metamodel 1 4 7 10

Constraints 2 5 8 11

Notation 3 6 9 12

4 Scale for scoring co-evolution:

1. When creating a new artifact, editor does
not open or gives errors

2. Editor opens without functionality

3. Editor allows creating a new artifact but
support for viewing and editing
earlier artifacts is incomplete

4. Editor opens and asks for human
intervention to finalize co-evolution

4½ if existing models behave and
generate, and deprecation guidance is
provided where needed

5. Editor opens with fully co-evolved
earlier artifacts

1 Nature of Change

Add Rename Remove Change

3 Location adversely impacted
• Metamodel, Constraints, Notation
• Generators, Tool, Models

* Tolvanen and Kelly. Evaluating Tool Support for Co-Evolution of Modeling
Languages, Tools and Models. ACM/IEEE MODELS Conference companion, 2023

© 2024 JPT 47

What about tools?

◼ 6 ways to get the tools we need for our language

1. Write own modeling tool from scratch

2. Write own modeling tool based on frameworks

3. Metamodel, generate modeling tool skeleton, add code

4. Metamodel, generate full modeling tool over a framework

5. Metamodel, output configuration for generic modeling tool

6. Integrated modeling and metamodeling environment

◼ Single-user, collaborative

◼ Versioning (not as traditional VCS), a domain-specific

◼ Easy to access and learn, supported, training etc.

© 2024 JPT 48

Tooling

© 2024 JPT 49

Tools in different domains*

* Ozkaya, M., Akdur, D., What do practitioners expect from the meta-modeling tools?
A survey, Journal of Computer Languages, Vo 63, 2021

© 2024 JPT 50

Where to apply? Where not?

◼ Timing is crucial

– At certain times organizations are ready for the change

◼ Repetition

– Product line, configurable product, many similar features

◼ Domain knowledge is substantial

– Business/domain rules have a big role, domain
experts/subject matter experts needed

◼ Not if:

– No repetition, new domain, unstable domain, multiple
organizations involved, no resources to create languages

© 2024 JPT 51

Cost of language creation:
industry cases*

* Tolvanen and Kelly. Effort Used to Create Domain-Specific Modeling Languages.
ACM/IEEE Conference on Model Driven Engineering Languages and Systems, 2018

© 2024 JPT 52

Concluding remarks

◼ Languages for non-developers allow wider range of people
to participate in developing software systems

– Define, check, validate, collaborate, test etc.

◼ Languages for domain-experts must:

– Raise abstraction above code, close to the problem domain

– Apply rich knowledge representations (maps, diagrams etc.)

– Provide more than just spec creation features, like guidance,
 k , m , m …

◼ Modern tools assist in creating and using languages

© 2024 JPT 53

Thank you

Questions?

Comments?

Counterarguments?

Experiences?

Contact: jpt@metacase.com

© 2024 JPT 54

About me: Juha-Pekka Tolvanen

◼ Works for MetaCase

– Provider of modeling and code generation tool MetaEdit+

◼ Acts as a consultant for creating modeling languages

– 100+ DSL solutions

◼ Co-author of a book on
Domain-Specific Modeling, IEEE-Wiley

◼ PhD in computer science,
adjunct professor

◼ Enjoys sailing and skiing

	Slide 1
	Slide 2: Software everywhere Software explosion Software is eating the world
	Slide 3: Continuous growth of functionality
	Slide 4
	Slide 5
	Slide 6: Also complexity is growing faster than software development productivity
	Slide 7: How to improve productivity?
	Slide 8: Solution?
	Slide 9: Solution?
	Slide 10
	Slide 11
	Slide 12
	Slide 13: General purpose
	Slide 14: Domain-specific
	Slide 15: Domain-Specific Languages
	Slide 16: Gothic Security*
	Slide 17: Domain-Specific Languages
	Slide 18: Mimic closely the domain
	Slide 19: Debug, confirming errors
	Slide 20
	Slide 21
	Slide 22: Who implemented languages? (n=100)
	Slide 23: Domains of the languages (n=100)
	Slide 24: Size of the metamodels (n=39)
	Slide 25: Primary language user (n=100)
	Slide 26: Primary language user (n=45)
	Slide 27: Size and user (n=24)
	Slide 28: Size and language creator (n=39)
	Slide 29: A language for insurance experts
	Slide 30: Languages for UX, usability experts
	Slide 31: Example: fish farm automation
	Slide 32: Example: heating system
	Slide 33: 4 railway DSLs
	Slide 34: Languages for safety (e.g. ISO26262)
	Slide 35: How languages are created?
	Slide 36: What is needed beyond metamodel
	Slide 37: 1. Concrete syntax matters
	Slide 38
	Slide 39: 2. Enable participation
	Slide 40: Case: manually tested to released
	Slide 41: 2. Enable participation
	Slide 42: 3. Support for language users
	Slide 43: Graphical Animation of Run-time Values
	Slide 44
	Slide 45: 4. Evolution and Co-evolution
	Slide 46: Evaluation framework: 4 aspects*
	Slide 47: What about tools?
	Slide 48: Tooling
	Slide 49: Tools in different domains*
	Slide 50: Where to apply? Where not?
	Slide 51: Cost of language creation: industry cases*
	Slide 52: Concluding remarks
	Slide 53: Thank you
	Slide 54: About me: Juha-Pekka Tolvanen

