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Languages for non-developers 
what, how, where?
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Software everywhere 
Software explosion
Software is eating the world

1950 1960 1970 1980 1990 2000 2010 2020
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Continuous growth of functionality
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Source: NASA, July 20, 1969

Apollo Guidance Computer 
software in 36K words

(16-bit wordlength)

Lawn mower robot:
software upgrade: 527 MB

(.msi package)
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Also complexity is growing faster than 
software development productivity
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How to improve productivity?
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Solution?

◼ More developers

◼ New frameworks

◼ Better tools

◼ More automation

◼ AI

◼ ?

◼ Better languages, also for non-developers
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Solution?

API query: https://pxdata.stat.fi:443/PxWeb/api/v1/en/StatFin/tyti/statfin_tyti_pxt_13au.px

Statistics Finland's interface service with the license CC BY 4.0

https://pxdata.stat.fi/PxWeb/api/v1/en/StatFin/tyti/statfin_tyti_pxt_13au.px
https://creativecommons.org/licenses/by/4.0/deed.en
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0100 1100 
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0000 0001 

0000 0000 

0000 0000 

0000 0010 

0010 0000 

0000 0010 

0000 0010 

0000 0000 

0000 0000

org 100h

mov ah,9h 

mov dx,offset text

int 21h 

ret

text: db ‘hello$’

int main(void) 

{

printf("Hello\n"); 

return 0; 

}

int main(void) 

{ 

cout<<"Hello"<<endl; 

return 0; 

}

Transcript show:'Hello'.

Abstraction

Automation
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Flow diagram for ENIAC, 
John von Neumann, 
1950 Manuscript 
Division, Library of 
Congress (164)
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General purpose
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Domain-specific
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Domain-Specific Languages

◼ Narrow, very narrow

◼ Aim for 100% fit with the problem domain

◼ Raise the level of abstraction, hide unnecessary details

◼ External and internal
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Gothic Security*
public class BasicStateMachine extends StateMachineBuilder {

Events doorClosed, drawerOpened, lightOn, panelClosed;
Commands unlockPanel, lockPanel, lockDoor, unlockDoor;
States idle, active, waitingForLight, waitingForDrawer, unlockedPanel;
ResetEvents doorOpened;

protected void defineStateMachine() {
doorClosed.code("D1CL");
drawerOpened.code("D2OP");
lightOn.code("L1ON");
panelClosed.code("PNCL");
doorOpened.code("D1OP");
unlockPanel.code("PNUL");
lockPanel.code("PNLK");
lockDoor.code("D1LK");
unlockDoor.code("D1UL");

idle
.actions(unlockDoor, lockPanel)
.transition(doorClosed).to(active)
;

active
.transition(drawerOpened).to(waitingForLight)
.transition(lightOn).to(waitingForDrawer)
;

waitingForLight
.transition(lightOn).to(unlockedPanel)
;
.transition(drawerOpened).to(unlockedPanel)
;

unlockedPanel
.actions(unlockPanel, lockDoor)
.transition(panelClosed).to(idle)
;

}
}

*Fowler, Domain-Specific Languages, Addison-Wesley, 2008

Event doorClosed = new Event("doorClosed", "D1CL");
Event doorOpened = new Event("doorOpened", "D1OP");
Event lightOn = new Event("lightOn", "L1ON");
Event drawerOpened = new Event("drawerOpened", "D2OP");
Event panelClosed = new Event("panelClosed", "PNCL");

Command unlockDoorCmd = new Command("unlockDoor", "D1UL");
Command lockPanelCmd = new Command("lockPanel", "PNLK");
Command unlockPanelCmd = new Command("unlockPanel", "PNUL");
Command lockDoorCmd = new Command("lockDoor", "D1LK");

StateMachine machine = new StateMachine(idle);

State activeState = new State("active");
State idleState = new State("idle");
State unlockedPanelState = new State("unlockedPanel");
State waitingForDrawerState = new State("waitingForDrawer");
State waitingForLightState = new State("waitingForLight");

activeState.addTransition(lightOn, waitingForDrawerState);
activeState.addTransition(drawerOpened, waitingForLightState);

idleState.addAction(unlockDoorCmd);
idleState.addAction(lockPanelCmd);
idleState.addTransition(doorClosed, activeState);

unlockedPanelState.addAction(unlockPanelCmd);
unlockedPanelState.addAction(lockDoorCmd);
unlockedPanelState.addTransition(panelClosed, idleState);

waitingForDrawerState.addTransition(drawerOpened, unlockedPanelState);

waitingForLightState.addTransition(lightOn, unlockedPanelState);

machine.AddResetEvents(doorOpened);
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Domain-Specific Languages

◼ Narrow, very narrow

◼ Aim for 100% fit with the problem domain 

◼ Raise the level of abstraction, hide unnecessary details

◼ External and internal

◼ Not a new idea!

◼ Applied also outside the software world!
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Mimic closely the domain
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Debug, confirming errors
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1. Picked 200 cases
2. Then selected 100 

(knowing who created them)
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Who implemented languages? (n=100)

51 %

17 %

32 %

in-house

external consultant

both
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Domains of the languages (n=100)
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Size of the metamodels (n=39)
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Primary language user (n=100)

9 %

27 %

8 %

1 %

55 %

Programmer

Domain expert

Between

Both

Unknown
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Primary language user (n=45)

20 %

60 %

18 %
2 %

Programmer

Domain expert

Between

Both
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Size and user (n=24)
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Size and language creator (n=39)
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A language for insurance experts

◼ Key language elements:
– Product & product bundle

– Calculation basis

– Damage

– Insured object

– Danger

– Product cover

– Event

– Payment

– Policyholder

– Risk

– Insured person

– Tariff
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Languages for UX, usability experts
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Example: fish farm automation
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Example: heating system

Code

Autobuild

API desc

BoM

Deployment 
guide
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4 railway DSLs
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Languages for safety (e.g. ISO26262)

◼ Item

◼ Hazard

◼ Hazard event

◼ Safety goal

◼ Safety concept

◼ Feature flaw

◼ ASIL

– Exposure

– Severity 

– Controllability
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How languages are created?

Modelingabstract syntax

concrete syntax semantics
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What is needed beyond metamodel

1. Concrete syntax matters

2. Involvement of language users = active participation

3. (Automated) support for language use

– Errors

– Warnings

– Guidance

– Simulation

– Animation 

4. Expect evolution and co-evolution with work done
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1. Concrete syntax matters

◼ Mimic the problem domain

◼ Accepted by users

◼ Symbols should use full range of visual variables*

*  .     y, T   “  y    ”    N        ,  EEE T                        E          ,    . 35,   . 6, 2009
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2. Enable participation

◼ Try early

– Examples of typical apps/features/systems, not metamodel

– Prototype, ready to throw away

– Narrow to minimum what is needed
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Case: manually tested to released
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2. Enable participation

◼ Try early

– Examples of typical apps/features/systems, not metamodel

– Prototype, ready to throw away

– Narrow to minimum what is needed

◼ Collaborative work: create & use DSL at the same time

– Ask to define notation

– Give (read-only or partial) access to the language 
definition

◼ Collect feedback

– Get feedback when language is used

– Via tool or even via the language itself
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3. Support for language users

◼ Not only basics of language, but also covering

– Errors

– Warnings

– Guidance

– Views

– Animation

– Simulation

◼ Examples

– Tutorials

– Typical cases
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Graphical
Animation of 

Run-time Values
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*Kelly, Tolvanen. Automated Annotations in Domain-Specific Models: Analysis of 23 Cases. STAF Workshops,  2021
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4. Evolution and Co-evolution

◼ Domain evolves

◼ Users learn

◼ External requirements must be met

➢ Language evolves

➢ Existing work must evolve too

◼ Ideally, updates automatically

– Manual work and transformations are often not practical
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Evaluation framework: 4 aspects*

2 Location 
of Change 

↓

1 Nature of Change

Add Rename Remove Change

Metamodel 1 4 7 10

Constraints 2 5 8 11

Notation 3 6 9 12

4 Scale for scoring co-evolution:

1. When creating a new artifact, editor does 
not open or gives errors

2. Editor opens without functionality

3. Editor allows creating a new artifact but 
support for viewing and editing 
earlier artifacts is incomplete

4. Editor opens and asks for human 
intervention to finalize co-evolution

4½ if existing models behave and 
generate, and deprecation guidance is 
provided where needed

5. Editor opens with fully co-evolved 
earlier artifacts

1 Nature of Change

Add Rename Remove Change

3 Location adversely impacted
• Metamodel, Constraints, Notation
• Generators, Tool, Models 

* Tolvanen and Kelly. Evaluating Tool Support for Co-Evolution of Modeling 
Languages, Tools and Models. ACM/IEEE MODELS Conference companion, 2023
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What about tools?

◼ 6 ways to get the tools we need for our language

1. Write own modeling tool from scratch

2. Write own modeling tool based on frameworks

3. Metamodel, generate modeling tool skeleton, add code

4. Metamodel, generate full modeling tool over a framework

5. Metamodel, output configuration for generic modeling tool

6. Integrated modeling and metamodeling environment

◼ Single-user, collaborative

◼ Versioning (not as traditional VCS), a domain-specific

◼ Easy to access and learn, supported, training etc.
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Tooling
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Tools in different domains*

* Ozkaya, M., Akdur, D., What do practitioners expect from the meta-modeling tools? 
A survey, Journal of Computer Languages, Vo 63, 2021
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Where to apply? Where not?

◼ Timing is crucial 

– At certain times organizations are ready for the change

◼ Repetition

– Product line, configurable product, many similar features

◼ Domain knowledge is substantial

– Business/domain rules have a big role, domain 
experts/subject matter experts needed

◼ Not if:

– No repetition, new domain, unstable domain, multiple 
organizations involved, no resources to create languages
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Cost of language creation: 
industry cases*

* Tolvanen and Kelly. Effort Used to Create Domain-Specific Modeling Languages. 
ACM/IEEE Conference on Model Driven Engineering Languages and Systems, 2018
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Concluding remarks

◼ Languages for non-developers allow wider range of people 
to participate in developing software systems

– Define, check, validate, collaborate, test etc.

◼ Languages for domain-experts must:

– Raise abstraction above code, close to the problem domain

– Apply rich knowledge representations (maps, diagrams etc.)

– Provide more than just spec creation features, like guidance, 
    k ,    m     ,   m       …

◼ Modern tools assist in creating and using languages
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Thank you

Questions?

Comments?

Counterarguments?

Experiences?

Contact: jpt@metacase.com
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About me: Juha-Pekka Tolvanen

◼ Works for MetaCase

– Provider of modeling and code generation tool MetaEdit+

◼ Acts as a consultant for creating modeling languages

– 100+ DSL solutions

◼ Co-author of a book on 
Domain-Specific Modeling, IEEE-Wiley

◼ PhD in computer science, 
adjunct professor 

◼ Enjoys sailing and skiing
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